
CO24: Chaos

A. Vitarana (pemb5671)
Pembroke College

Abstract

We calculate solutions of the Lorentz system using the fourth-order Runga-Kutta algorithm, given
initial conditions and parameters for the Lorenz equations. Plotting the trajectory of the variables, it
is clear the system is sensitive to changes in its initial conditions in certain regimes of the parameters;
the system exhibits chaotic behaviour with parameters set close to a=10, b=8/3 and r=28.

1 Introduction

The Lorenz equations are three ordinary differential equations that form the Lorentz model. The Lorenz
equations of the time-dependent variables y1, y2 and y3 are:

dy1
dt

= a(y2 − y1) (1)

dy2
dt

= ry1 − y2 − y1y3 (2)

dy3
dt

= y2y1 − by3, (3)

where a, r, and b are constants.

These equations can be used as a simplified model of atmospheric conduction, with each variable de-
scribing properties of the fluid in the Rayleigh-Bénard experiment, and they can be derived from the
Navier-Stokes equations, the equation for heat conduction and the continuity equation [1]. Physically, y1
is proportional to the rate of convection, y2 to the temperature difference between currents and y3 is the
temperature difference between the top and the bottom of the fluid, where a is the Prandtl number, r is
the Rayleigh number and b is a geometric factor [2].

The set of equations has three stationary solutions:

y1 = y2 = ±
√
b(r − 1), y3 = (r − 1) (4)

y1 = y2 = y3 = 0, (5)

The approach to these solutions from an arbitrary starting point are dependent on the regime of r [3].

1. If r < 1 the only real stationary point is the origin

2. If r > 1 all three stationary points exist. However, the origin is unstable and so you will never reach
it unless you start exactly on it. As r increases, there is a higher degree of uncertainty in the system.

(a) If r < 1 is less than about 24 the system will converge to one of the two stationary points not
found at the origin.

(b) If r > 1 is greater than about 24, the system will not converge to either solution and will move
between the two fixed points in space. The behaviour is bounded but non-periodic.

1

2 Methods

These equations are coupled first order differential equation and numerical solutions are much easier to
obtain than attempts to solve analytically through decouple the solutions or particular integrals and
complementary functions. Runge-Kutta methods are iterative methods of approximately solving ordinary
equations using small time steps. The Runge-Kutta method implemented in this program was the fourth-
order method (RK4). The equations given in 1-3 are in the form,

dyi
dt

= f(y1, y2, y3). (6)

Defining a small time interval δt, the value of the yi can be iteratively calculated at time steps of δt.
Referring to the mth intermediate point in our calculation as yi,m and fi,m, the RK4 iteration steps are:

1. Calculate fi,0 using yi,0

2. Calculate fi,1 using yi,1 = yi,0 +
yi,0δt

2

3. Calculate fi,2 using yi,2 = yi,1 +
yi,1δt

2

4. Calculate fi,3 using yi,3 = yi,2 + yi,2δt

5. yi,4 = yi,0 +
(fi,0+2fi,1+2fi,2+fi,3)δt

6

The values yi,4 then become yi,0 in the next step and the value of yi,n, where n = 4m, corresponds
to the value of yi at time, t = mδt. The initial conditions of the system yi,0 and the parameters of the
system, a, b and r can be varied.

Although faster methods exist, Runge-Kutta methods nearly always work and hence are often used to
produce a numerical solution [4]. Runge-Kutta algorithms are derived from Simpson’s rule and use varying
subintervals depending on their order; the fourth order algorithm gives the best balance between accuracy
and computational effort [5]. These algorithms are better approximations of solutions than Euler’s method
due to the use of higher order terms which reduces truncation error, but they require more computational
power.

3 Analysis and Results

3.1 Different Regimes of r

We fix the values of the parameters a = 10 and b = 8/3. Also, to compare different regimes we fix the
initial conditions y1,0 = 1, y2,0 = 2 and y3,0 = 3 and the solutions are evaluated over n = 500 time steps,
δt = 0.05.

3.1.1 r < 1

Setting r = 0, from figure 1(a), we observe that the values of y1, y2 and y3 converge to zero, which we
expect since the only real stationary point in this regime is the origin. Figure 1(b) shows the relation
between variables y2 and y3; their behaviour towards converging at the origin is non-chaotic.

3.1.2 1 < r < 24

Setting r = 15, from figure 2(a), we observe that the values of y1, y2 and y3 converge to one of the
solutions, not including the origin, unless the initial conditions start at the origin since it is unstable.
Figure 2(b) shows this convergence is a reached by spiralling around the solution.

2

(a) Graph of y1, y2 and y3 against time (b) Graph of y2 against y3

Figure 1: r = 0

(a) Graph of y1, y2 and y3 against time (b) Graph of y2 against y3

Figure 2: r = 15

(a) Graph of y1, y2 and y3 against time (b) Graph of y2 against y3

Figure 3: r = 30

3

Figure 4: 3D plot of y1, y2 and y3 at r = 30

3.1.3 r > 24

Setting r = 30, from figure 3(a), we observe that the values of y1, y2 and y3 do not converge to one of the
solutions, but instead wanders between the two solutions that are not the unstable origin. Figure 3(b)
shows this convergence is a reached by spiralling around the solution.

This is a strange attractor, since the solutions are bounded but non-periodic. Plotting all three
coordinates against each other, a more intuitive image of the Lorentz attractor can be viewed as in figure
4.

3.2 Chaotic Behaviour: ‘the weather forecasting’ phenomena

From §4.1.3, we observe what seems to be chaotic behaviour. To analyse this behaviour we fix the values
of the parameters a = 10, b = 8/3 and r = 28, but slightly change the initial conditions y1,0, y2,0 and
y3,0. As before, the solutions are evaluated over n = 500 time steps, δt = 0.05. Initially, we set the initial
conditions y1,0 = 4, y2,0 = 5 and y3,0 = 6, which we call these the real conditions. The time-evolution of
the variables are compared to initial conditions y1,0 = 4.01, y2,0 = 5.01 and y3,0 = 6.01, which we call a
’small measurement error’.

Focusing on the time-evolution of y1, Figure 5 shows that the slight change in initial conditions leads
to a similar initial time evolution. However, after a short period of time the solutions separate and begin
to wander about the two solutions following different paths. This demonstrates deterministic chaotic
behaviour, since the present determines the future but the approximate present does not approximately
determine the future. Since, weather systems can be approximated by the Lorentz model this demon-
strates the difficulties of predicting the weather; small measurement errors will lead to vastly different
outcomes.

4

Figure 5: y1 against time with a ’small measurement error’ in initial conditions

5

4 Conclusions

The Lorentz system demonstrates chaotic behaviour in the regime r > 24, since a small change in the
initial conditions of the system drastically changes the time-evolution of the system. The Lorentz attrac-
tor is observed, since the system is bounded by two solutions, but does not converge to either. In the
approximately the regime 1 < r < 24, the system will converge to one of the two solutions, which are
not the origin, depending upon initial conditions. In the regime, r < 1, the system will converge to the
solution at the origin.

The RK4 method offers a clear visualisation of the chaotic behaviour observed. However, since the
RK4 method is an iterative method it propagates error. This is particularly unhelpful when studying
chaos as the system is sensitive to small changes and therefore the numerical solution obtained by the
RK4 method is likely to be vastly different from the actual solution after a long period of time; a small
local error develops into a large global error. Another disadvantage in my ODE solver program was the
use of equally spaced time intervals as at turning points the RK4 method is more inaccurate. Combing
the RK4 method with intelligent adaptive step-size routine would increase the accuracy of the solution;
MatLab has an inbuilt ode45 function that uses RK4 with changing time-steps. For systems with a large
numbers of coupled equations, this adaptive step-size is particularly important. The ODE solver is ex-
tremely versatile and slight modifications to the program allow the higher order ODEs to be solved, such
as a damped oscillator.

References

[1] Schuster H. G. (1988). Deterministic chaos: an introduction, 2nd Ed. Darmstadt: betz-druck gmbh,
p 223-225.

[2] Weisstein, E. (2018). CO24: chaos [Accessed 24 January 2020] Available at:
http://mathworld.wolfram.com/LorenzAttractor.html

[3] (2018). Lorentz Attractor [Accessed 24 January 2020] Available at: https://www-
teaching.physics.ox.ac.uk

[4] Press W. H. et al. (2007). Numerical Recipes: the Art of Scientific Computing, 3rd Ed. Cambridge:
Cambridge University Press, p 908.

[5] O’Hare A. (2005). Numerical Methods for Physicists, Oxford Physics, p 69.

6

Appendix A ODE Solver

1 function [y] = ode_solve_rk(f1, f2, f3 , y0 , t)

2 % Author: Aaron Vitarana , Date: 22/01/2020

3 %

4 % Solve ODE problems using Runge -Kutta algorithm.

5 %

6 % Input:

7 % * f1, f2, f3: functions that receive current states of y1, y2 and y3

8 % * y0: the initial state of the system , given in a column matrix (3 x

1).

9 % * t: vector of equally spaced position/time steps with length N where

the values of y will be returned.

10 %

11 % Output:

12 % y: (3 x N) matrix that contains the values of y at every position/time

13 % step and columns correspond to the position/time and rows to the

element of y.

14

15

16 % setting up initial vector and filling it with the initial conditions

17 y = zeros(3, length(t))

18 y(1, 1) = y0(1, 1);

19 y(2, 1) = y0(2,1);

20 y(3, 1) = y0(3,1);

21

22 % determining time step

23 dt = abs(t(2) - t(1));

24

25

26 for a = 1:(length(t) -1) %iterate through all values of t except the

largest value

27 k1 = f1(y(1,a), y(2,a), y(3,a));

28 l1 = f2(y(1,a), y(2,a), y(3,a));

29 m1 = f3(y(1,a), y(2,a), y(3,a));

30 k2 = f1(y(1,a) + 0.5*k1*dt , y(2,a) + 0.5*l1*dt , y(3,a) + 0.5*m1*dt);

31 l2 = f2(y(1,a) + 0.5*k1*dt , y(2,a) + 0.5*l1*dt , y(3,a) + 0.5*m1*dt);

32 m2 = f3(y(1,a) + 0.5*k1*dt , y(2,a) + 0.5*l1*dt , y(3,a) + 0.5*m1*dt);

33 k3 = f1(y(1,a) + 0.5*k2*dt , y(2,a) + 0.5*l2*dt , y(3,a) + 0.5*m2*dt);

34 l3 = f2(y(1,a) + 0.5*k2*dt , y(2,a) + 0.5*l2*dt , y(3,a) + 0.5*m2*dt);

35 m3 = f3(y(1,a) + 0.5*k2*dt , y(2,a) + 0.5*l2*dt , y(3,a) + 0.5*m2*dt);

36 k4 = f1(y(1,a) + k3*dt , y(2,a) + l3*dt , y(3,a) + m3*dt);

37 l4 = f2(y(1,a) + k3*dt , y(2,a) + l3*dt , y(3,a) + m3*dt);

38 m4 = f3(y(1,a) + k3*dt , y(2,a) + l3*dt , y(3,a) + m3*dt);

39

40 y(1, a+1) = y(1, a) + (k1 + 2*k2 + 2*k3 + k4)*dt/6;

41 y(2, a+1) = y(2, a) + (l1 + 2*l2 + 2*l3 + l4)*dt/6;

42 y(3, a+1) = y(3, a) + (m1 + 2*m2 + 2*m3 + m4)*dt/6;

43 end

44

45 end

7

Appendix B Lorenz Equations

1 function [y] = solve_lorenz(y0 , a , b , r , t)

2 % Author: Aaron Vitarana , Date: 22/01/2020

3 % Solve Lorenz equations using the implemented ODE solver.

4 % Input:

5 % * y0: a column vector of the starting point with size (3 x 1)

6 % * a, b, r: parameters of the Lorenz equations

7 % * t: an N?element vector of time/position steps where y will be

calculated

8 %

9 % Output:

10 % * y: a (3 x N) matrix that contains the values of y for every time

step

11

12 % defining Lorenz functions

13 f1 = @(y1 , y2 , y3) (a*(y2 -y1))

14 f2 = @(y1 , y2 , y3) (r*y1 -y2 -y1*y3)

15 f3 = @(y1 , y2 , y3) (y1*y2 -b*y3)

16

17

18 % calls Runga -Kutta function to solve ODEs

19 % returns y: (M x N) matrix that contains the values of y at every

position/time

20 % step and columns correspond to the position/time and rows to the

element of y.

21 [y] = ode_solve_rk(f1, f2, f3, y0 , t)

22

23 end

8

	Introduction
	Methods
	Analysis and Results
	Different Regimes of r
	r<1
	1<r<24
	r>24

	Chaotic Behaviour: `the weather forecasting' phenomena

	Conclusions
	ODE Solver
	Lorenz Equations

